Neural Control System for Autonomous Vehicles
نویسندگان
چکیده
Neural networks have been used in a number of robotic applications (Das & Kar, 2006; Fierro & Lewis, 1998), including both manipulators and mobile robots. A typical approach is to use neural networks for nonlinear system modelling, including for instance the learning of forward and inverse models of a plant, noise cancellation, and other forms of nonlinear control (Fierro & Lewis, 1998). An alternative approach is to solve a particular problem by designing a specialized neural network architecture and/or learning rule (Sutton & Barto, 1981). It is clear that biological brains, though exhibiting a certain degree of homogeneity, rely on many specialized circuits designed to solve particular problems. We are interested in understanding how animals are able to solve complex problems such as learning to navigate in an unknown environment, with the aim of applying what is learned of biology to the control of robots (Chang & Gaudiano, 1998; Martínez-Marín, 2007; Montes-González, Santos-Reyes & RíosFigueroa, 2006). In particular, this article presents a neural architecture that makes possible the integration of a kinematical adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro-controller for nonholonomic mobile robots. The kinematical adaptive neuro-controller is a real-time, unsupervised neural network that learns to control a nonholonomic mobile robot in a nonstationary environment, which is termed Self-Organization Direction Mapping Network (SODMN), and combines associative learning and Vector Associative Map (VAM) learning to generate transformations between spatial and velocity coordinates (García-Córdova, Guerrero-González & García-Marín, 2007). The transformations are learned in an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The obstacle avoidance adaptive neurocontroller is a neural network that learns to control avoidance behaviours in a mobile robot based on a form of animal learning known as operant conditioning. Learning, which requires no supervision, takes place as the robot moves around a cluttered environment with obstacles. The neural network requires no knowledge of the geometry of the robot or of the quality, number, or configuration of the robot’s sensors. The efficacy of the proposed neural architecture is tested experimentally by a differentially driven mobile robot.
منابع مشابه
Modeling and Intelligent Control System Design for Overtaking Maneuver in Autonomous Vehicles
The purpose of this study is to design an intelligent control system to guide the overtaking maneuver with a higher performance than the existing systems. Unlike the existing models which consider constant values for some of the effective variables of this behavior, in this paper, a neural network model is designed based on the real overtaking data using instantaneous values for variables. A fu...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملControl of Autonomous Underwater Vehicles using Neural Network Based Robust Control System
A neural network based robust control system design for the yaw angle of autonomous underwater vehicle (AUV) is presented in this paper. Two types of control structure were used to control prescribed trajectories of an AUV. The results of the simulation showed that the proposed neural network based robust control system has superior performance in adapting to large random disturbances such as w...
متن کاملDesign of Neural Network Control System for Controlling Trajectory of Autonomous Underwater Vehicles
A neural network based robust control system design for the trajectory of Autonomous Underwater Vehicles (AUVs) is presented in this paper. Two types of control structure were used to control prescribed trajectories of an AUV. The vehicle was tested with random disturbances while taxiing under water. The results of the simulation showed that the proposed neural network based robust control syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009